Multi-plane super-resolution microscopy

نویسنده

  • Azat SHARIPOV
چکیده

Understanding cell functions is the major goal of molecular biology, which intends to elucidate the interactions between biomolecules at a subcellular level. One of the widely used techniques in molecular biology is fluorescence microscopy, which offers high specificity and sensitivity at the submicrometer spatial scale but is limited by diffraction to about 200nm lateral resolution, which is insufficient for the observation of many molecular processes. During the last two decades several super-resolution techniques overcoming the diffraction limit have been developed. However, imaging samples in three dimensions (3D) at high speed remains a challenging and not yet resolved task. This thesis focuses on enhancing super-resolution imaging towards fast, live-cell and 3D imaging. Super-resolution optical fluctuation imaging (SOFI) is a technique based on the stochastic fluctuations of photoswitchable fluorescent markers. It possesses several unique features such as background reduction, capability of increased pixel grid generation, i.e. spatial oversampling, as well as tolerance and robustness to a wide range of photoswitching conditions. In this thesis SOFI was extended to perform 3D analysis. As a result, the resolution in all three spatial dimensions can be improved and the depth sampling increased. We present a novel design of a 3D fluorescence microscope capable of acquiring images of eight depth planes simultaneously. This design incorporates an image-splitting prism, a single optical element allowing to achieve in-depth image separation. The optical performance of the 3D microscope was described and experimentally verified. The simultaneous depth plane acquisition allows to fully exploit the 3D capabilities of SOFI while generating additional virtual depth planes. An algorithm for the extraction of switching kinetics of fluorescent markers is presented. Using appropriate imaging conditions, we demonstrate the applications of 3D SOFI on several examples of fixed and living cells. We also present the potential of the 3D microscope for phase retrieval in transparent samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translation Microscopy (TRAM) for super-resolution imaging

Super-resolution microscopy is transforming our understanding of biology but accessibility is limited by its technical complexity, high costs and the requirement for bespoke sample preparation. We present a novel, simple and multi-color super-resolution microscopy technique, called translation microscopy (TRAM), in which a super-resolution image is restored from multiple diffraction-limited res...

متن کامل

Pseudo Zernike Moment-based Multi-frame Super Resolution

The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...

متن کامل

Super Temporal-Resolved Microscopy (STReM).

Super-resolution microscopy typically achieves high spatial resolution, but the temporal resolution remains low. We report super temporal-resolved microscopy (STReM) to improve the temporal resolution of 2D super-resolution microscopy by a factor of 20 compared to that of the traditional camera-limited frame rate. This is achieved by rotating a phase mask in the Fourier plane during data acquis...

متن کامل

Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping

Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromi...

متن کامل

Virtual-'Light-Sheet' Single-Molecule Localisation Microscopy Enables Quantitative Optical Sectioning for Super-Resolution Imaging

Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-'light-sheet', a t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017